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We use a shadowgram of the s t r eaml in ing  of a spe r i ea l  pa r t i c le  giving off heat to explain the 
fac to r s  respons ib le  for  the change in the magnitude of the p a r t i c l e ' s  ae rodynamic  drag.  

In examining the p rob lem of the ae rodynamic  d rag  of pa r t i c l e s  r e l eas ing  heat in a gas  flow, we have 
frequently heard  e x p r e s s e d  the opinion that the changes taking place  within the boundary l aye r  of such a 
pa r t i c l e  exe r t s  cons iderab le  influence, as  opposed to the case  of i so the rma l  s t reaml in ing  [1-3]. However ,  
we know of no a t tempts  to invest igate  these  changes through d i rec t  exper imenta t ion  and this ,  in our opin- 
ion, would have made it poss ib le  to demons t r a t e  the physical  nature  of the phenomenon. In this connection, 
we felt it advisable  to produce the s t r eaml in ing  pa t t e rn  for a heated spher ica l  pa r t i c l e  in a flow of cold a i r ,  
making the boundary l aye r  v is ib le ,  and record ing  the changes in the l a t t e r  as a function of the t empe ra tu r e  
d i f ference  between the pa r t i c l e s  and the flow when such p a r a m e t e r s  as pa r t i c le  d imensions  and flow veloci ty  
a r e  va r ied .  

We employed the following method for this purpose .  A heated spher ica l  pa r t i c l e  r igidly at tached to 
a thin quar tz  r o d  is p laced into the flow axis of a cold a i r  s t r e a m  in the immedia te  vicini ty of a nozzle 
outlet ,  i . e . ,  in the co re  of the flow (this makes  it poss ib le  to de te rmine  the s t reaml in ing  veloci ty  for  the 
par t i c le  with an accu racy  sufficient for  the pu rposes  of this problem) .  The pa r t i c l e  is i l luminated with a 
spot light source  f rom a g r e a t  d is tance .  The shadow produced by the pa r t i c l e  is p ro jec ted  onto a fi lm and 
photographed without any addit ional optics.  The light r ays  f rom the spot source ,  on pass ing  through the 
a i r  heated nea r  the pa r t i c l e ,  a r e  def lected toward the boundary of the t he rma l  l ayer  and a re  made vis ible  
on a s c r e e n  as a l igh te r  s t r ip .  It is impor tan t  that  the posi t ion of this s t r ip  is independent both o f  the d i s -  
tance between the pa r t i c l e s  and f rom the light source ,  nor  should the dis tance between the par t i c le  and the 
s c r e e n  have any effect.  In connection with the noted fea ture ,  we a s sume  that this s t r ip  can be r ega rded  as 
the boundary between the hot and cold a i r  (the a i r  not heated by the par t ic le ) ,  while that  por t ion of the a i r  
s i tuated between the s t r ip  and the pa r t i c l e  can be t r ea t ed  as the t h e r m a l  boundary  layer .  

The pa r t i c l e  is heated by means of a specia l  hea te r  made of a plat inum wire  capable of producing t e m -  
p e r a t u r e s  up to 1400~ The hea te r  has  an inside d i ame te r  of 3 mm and it is 4 mm long; it is covered on 
the outside with heat  insulat ion and it is p laced over  the par t i c le  to heat  it, thus not affect ing the t he rma l  
s ta te  of the nozzle  wal ls ,  nor dis tor t ing the main flow. The sur face  t e m p e r a t u r e  of the par t i c le  is defined 
as the t e m p e r a t u r e  produced by the hea te r  at the instant that the heating opera t ion  is stopped. It is natural  
that  the sur face  t e m p e r a t u r e  d i f fers  sl ightly f rom the above definition in the exper imen t  (at the instant  of 
photography).  However ,  s ince the desc r ibed  expe r imen t s  sought to achieve only a qual i ta t ive pa t te rn  of the 
changes taking place  and did not seek  to achieve  an exact  quanti tat ive evaluation of these ,  the noted m e a -  
su r emen t  e r r o r s  in this case  played no significant  role .  

For  the purposes  of the study, the spher ica l  pa r t i c l e s  we re  made of plat inum (0.68 and 1.36 mm in 
d iameter )  and of a luminum oxide (2.45 ram in d iameter ) .  

The exper imen t  was c a r r i e d  out in the following sequence.  The par t ic le  was posi t ioned at the axis 
of the flow and the requ i red  flow ra te  was es tabl ished;  this flow ra te  cor responded  to the theore t ica l  a i r  
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Fig. 1. A heated par t ic le  with a d iameter  of d = 2.45 mm st reamlined by cold air  (t a = 20~ : 1) w 
= 0.2 m / s e c ,  t = 500~ 2) 0.6 and 500;3) 2and500; 4) 8 and 500; 5) 0.2 and 1400; 6) 0.6 and 1400; 
7) 2 and 1400; 8) 8 and 1400. 

Fig. 2. Relative thickness of the thermal  boundary layer  as a function of the relat ive velocity at an 
air  t empera ture  ta = 200C and as a function of the par t ic le  t empera tu re :  1) 500~ 2) 900; 3) 1400; 
a) d = 2.45 ram; b) 1.36; c) 0.68. 

velocity. The lighting was then turned on. The heater  was lowered over the par t ic le  and it was removed as 
soon as the par t ic le  reached the required tempera ture .  The par t ic le  was photographed on film by the above- 
descr ibed shadow method at the instant that the heater  was removed.  

With this procedure  we obtained photographs showing the s t reamlining of par t ic les  with dimensions of 
0.68, 1.36, and 2.45 mm as these were  heated to t empera tu res  of 500, 900, and 1400~ subsequently being 
subjected to a flow of cold air  (about 20~ whose velocit ies varied from 0.2 to 8.0 m/ sec .  The invest i-  
gated range of Reynolds numbers  thus encompassed values f rom 8 to 1300. As an example, Fig. 1 shows 
such photographs for a par t ic le  2.45 mm in size,  heated to 500 and 1400~ 

The photographs c lear ly  show the change in the nature of the flow, as well as the shape and dimen-  
sions of the boundary layer  with a change in the indicated pa rame te r s .  The most significant and most con-  
venient for the cha rac te r i s t i c  of the phenomena of interest  to us seems ,  in our opinion, to be the changes 
in the thickness of the boundary layer .  An examination of these photographs easi ly shows that this quantity 
increases  with a r i se  in t empera ture ,  with a drop in the relat ive velocity,  and with a reduction in par t ic le  
size.  

For  g rea te r  clar i ty,  the noted changes are  shown in Fig. 2 in the form of the relat ive thickness ~ of 
the thermal  boundary layer  (for the indicated quantity A we have taken the rat io of the thickness of the layer  
at the midsection of the par t ic le  to its radius) as a function of the f r ees t r eam velocity w. 
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The re su l t s  c lea r ly  show the exis tence  of a d i rec t  re la t ionship  between the th ickness  of the t he r ma l  
boundary l aye r  and the excess  of par t ic le  sur face  t e m p e r a t u r e  over  the t e m p e r a t u r e  of the s t r e a m  flowing 
pas t  the par t ic le :  the th ickness  of the boundary l aye r  i nc rea se s  with a r i s e  in t e m p e r a t u r e  and this occurs  
the m o r e  intensively,  the s m a l l e r  the pa r t i c l e  and the lower  the re la t ive  veloci ty  at which the p a r -  
t ic le  is s t r eaml ined  by the flow. 

If we p roceed  f rom the genera l ly  accepted concept to the effect  that the fac tor  respons ib le  for the ap-  
pea r ance  of ae rodynamic  d rag  fo r ce s  in the motion of a body through a medium is p r i m a r i l y  the force  of 
v i scous  f r ic t ion  in the boundary l aye r ,  it is obvious that an inc rease  in the th ickness  of this l aye r  must  
n e c e s s a r i l y  lead to an inc rease  in the d rag  fo rces .  We noted such an inc rease  in specia l  exper iments ,  not 
covered  he re ,  as well  as in the work of numerous  other  inves t iga tors ,  analyzed in detail  in [4]. 

We can desc r ibe  the mechan i sm for  the inc rease  in the d rag  fo rces  in the following manner .  As a 
r e su l t  of a change in the t e m p e r a t u r e  of the gas medium (air) around the par t i c le  as a r e su l t  of being heated 
by the l a t t e r ,  the l a y e r s  adjacent  to the par t ic le  sur face  acquire  e levated v i scos i ty  which diminishes  with 
increas ing  dis tance f rom the par t i c le .  T h e r e f o r e ,  as  the par t i c le  is se t  in motion (relative) it c a r r i e s  with 
it a l a rge  quantity of gas  (as opposed to i so the rma l  motion), i. e . ,  the re  is an inc rease  in the th ickness  of 
its hydrodynamic  boundary l aye r ,  which r e su l t s  in an additional d rag  force .*  

Here ,  the change in the density of the medium as  a r e su l t  of pa r t i c l e  heating may affect  the magnitude 
of the resu l t ing  additional force:  when the gas  is heated nea r  the sur face  of the pa r t i c l e ,  it expands,  p r o -  
ducing the phenomenon of an impulse  d i rec ted  against  the motion of the par t i c le .  A s im i l a r  impulse ,  ap-  
p e a r i n g w i t h t h e  cooling of the gas in the wake behind the pa r t i c l e  and moving in the d i rec t ion of par t ic le  
motion, will obviously be s m a l l e r  than the f o r m e r .  The resu l tan t  will t h e r e f o r e  be d i rec ted  against  the 
motion of the pa r t i c l e ,  i . e . ,  it will a lso  lead to an inc rease  in pa r t i c le  drag.  

In addition to these  fo r ce s ,  leading to an i nc rea se  in the ae rodynamic  drag  of a heated par t ic le  as a 
r e su l t  of an inc rease  in the th ickness  of the p a r t i c l e ' s  boundary l aye r ,  we should also r e m e m b e r  that the 
change in the ve ry  nature  of pa r t i c l e  s t r eaml in ing ,  as  noted in our expe r imen t s  (see Fig. 1), must  nec-  
e s s a r i l y  affect  the magnitude of the resu l t ing  additional force :  an inc rease  in the width of the wake behind 
the pa r t i c l e  (along the boundary of the t h e r m a l  layer)  with a r i s e  in par t ic le  t e m p e r a t u r e .  

The resul t ing  data thus provide  an explanation for  the physical  e s sence  of the phenomena occur r ing  
in the non i so thermal  s t r eaml in ing  of a spher ica l  pa r t i c le ,  leading to a change inthe magnitude of the force  of 
ae rodynamic  d rag  (in compar i son  with the i so the rma l  problem) : the fac tor  r e spons ib le  for  these  pheno-  
mena can be found in the changes in the t h e r m a l  boundary l a y e r  of the par t ic le  and in the nature  of the flow 
pas t  the  pa r t i c le .  

L I T E R A T U R E  C I T E D  

1. N . I .  Syromyantnikov,  Izv. VTI, No. 10 (1948). 
2. Z . S .  Leont leva,  Izv.  Akad. Nauk SSSR, OTN, No. 12 (1951). 
3. V . I .  Babii  and I. P. Ivanova,  Inzh. Fiz. Zh . ,  No. 1 (1961); T e p o l e n e r g . ,  No. 9 (1965). 
4. A . B .  Reznyakov,  I. P. Basina,  S. V. Bukhman, M.  I. Vdovenko, and B. P. Ust imenko,  The Com-  

bust ion of Natural  Solid Fuel [in Russ ian] ,  Nauka, A lma-Ata  (1968). 
5. D . M .  Apter  and Z. F. Chukhanov, in: Fuel Uti l izat ion in Power  Engineer ing [in Russian] ,  No. 3, 

Izd. AN SSSR, Moscow (1963). 

* It is c h a r a c t e r i s t i c  that in studying the motion of spher ica l  pa r t i c l e s  r e l ea s ing  heat  in a liquid (water) we 
noted a drop in the r e s i s t a n c e  (drag), which the authors  of this r e s e a r c h  pro jec t  [5] a lso  explained by a 
reduct ion in the v i scos i ty  of the liquid l aye r  surrounding the par t ic le .  
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